Role of acid-sensing ion channel 1a in the secondary damage of traumatic spinal cord injury.
نویسندگان
چکیده
OBJECTIVE To determine the cellular and molecular mechanisms by which acid-sensing ion channel 1a (ASIC1a) plays its role in the secondary injury after traumatic spinal cord injury (SCI), and validate the neuroprotective effect of ASIC1a suppression in SCI model in vivo. BACKGROUND Secondary damage after traumatic SCI contributes to the exacerbation of cellular insult and thereby contributes to spinal cord dysfunction. However, the underlying mechanisms remain largely unknown. Acidosis is commonly involved in the secondary injury process after the injury of central nervous system, but whether ASIC1a is involved in secondary injury after SCI is unclear. METHODS Male Sprague-Dawley rats were subjected to spinal contusion using a weight-drop injury approach. Western blotting and immunofluorescence assays were used to observe the change of ASIC1a expression after SCI. The TUNEL staining in vivo as well as the cell viability and death assays in spinal neuronal culture were employed to assess the role of ASIC1a in the secondary spinal neuronal injury. The electrophysiological recording and Ca(2+) imaging were performed to reveal the possible underlying mechanism. The antagonists and antisense oligonucleotide for ASIC1a, lesion volume assessment assay and behavior test were used to estimate the therapeutic effect of ASIC1a on SCI. RESULTS We show that ASIC1a expression is markedly increased in the peri-injury zone after traumatic SCI. Consistent with the change of ASIC1a expression in injured spinal neurons, both ASIC1a-mediated whole-cell currents and ASIC1a-mediated Ca(2+) entry are significantly enhanced after injury. We also show that increased activity of ASIC1a contributes to SCI-induced neuronal death. Importantly, our results indicate that down-regulation of ASIC1a by antagonists or antisense oligonucleotide reduces tissue damage and promotes the recovery of neurological function after SCI. CONCLUSION This study reveals a cellular and molecular mechanism by which ASIC1a is involved in the secondary damage process after traumatic SCI. Our results suggest that blockade of Ca(2+) -permeable ASIC1a may be a potential neuroprotection strategy for the treatment of SCI patients.
منابع مشابه
Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملEffects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملReview of studies on Mechanical Performance of Spinal Cord in Traumatic Injuries
Considering the extent of the disability caused by spinal cord injury and the increasing incidence of it, many attempts have been made to understand how this lesion is repaired. Most of the spinal cord injuries are traumatic injuries. The annual incidence of this damage is estimated between 15-40 cases per million people worldwide. Considering the extent of this incident, the need for study of ...
متن کاملEffect of Oleuropein on Tissue Myeloperoxidase Activity in Experimental Spinal Cord Trauma
Background: Neutrophil infiltration plays an important role in inflammatory reactions following spinal cord injury (SCI) and these cells cause substantial secondary tissue damage. The purpose of this study was to determine the effect of oleuropein (OE) on myeloperoxidase (MPO) activity as an index of neutrophil infiltration. Methods: Rats were randomly divided into four groups of 7 rats each as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of surgery
دوره 254 2 شماره
صفحات -
تاریخ انتشار 2011